본문 바로가기

DL 기본개념

Bayes' theorem & VAE

https://tkayyoo.tistory.com/134

 

[Generative] DDPM : Denoising Diffusion Probabilistic Models (NIPS'20)

Paper : https://arxiv.org/abs/2006.11239 Authors Jonathan Ho et al, UC Berkeley, NIPS’20 Main Idea 기존 Diffusion 모델이 High Quality Sample을 Generation할 수 있다는 것을 보임. ε-prediction reverse process parametrization 기법을 제안

tkayyoo.tistory.com

위 티스토리를 참고하여 쓴 글입니다.

 

베이즈 정리

VAE

VAE의 ELBO

 

 

베이즈 정리

conditional distribution

데이터라는 조건이 주어졌을 때의 조건부 확률을 구하는 공식

 

Bayesian rule

p(A) : 사전 확률(prior) -> 사건 B가 발생하기 전 가지고 있던 A의 확률

p(A|B) : 사후확률(posterior) -> 사건 B가 발생했을 때의 정보를 반영하여 갱신되는 A의 확률

p(B|A) : 가능도(likelihood) -> 사건 A가 발생한 경우 사건 B의 확률

 

베이즈 정리는 새로운 정보가 기존 추론에 영향을 미치는 것을 보여준다.

https://tkayyoo.tistory.com/134

 

위 A, C를 사용하여 식을 전개하면 아래와 같은 결과를 얻을 수 있다.

 

위 식에서 input x와 model parameter θ는 독립임을 이용하여 다시 한 번 아래와 같이 정리 할 수 있다.

θ : 모델 파라미터로 현재의 증거

D : Data로 과거의 경험

x : input

y : output

 

p(θ|D), p(θ|x,y) : 사후 확률로 이러한 x,y일 때 θ에 대해 궁금해하는 것으로 일반적 DL에서의 우리의 궁극적 목표이다.

p(D|θ), p(y|θ,x) : likelihood로 모델은 θ이고, 인풋은 x인데 이때의 output y를 궁금해하는 것이다

 

위에서 말했듯이 딥러닝에서의 우리의 목표는 p(θ|D), p(θ|x,y)이다. 

하지만 딥러닝에서 최적의 모델인 p(θ)는 알 수 없다.

그렇기 때문에 weight initailization을 적용하여 p(D|θ)를 추론해 가는 것!

데이터 D가 θ 모델을 따를 확률이 최대가 되도록 모델 θ를 찾는것!

위 과정을 MLE:maximun=m likelihood estimation이라 부른다.

 

하지만 bayesian network라면? 

p(θ)를 알 수 있다! => gaussian distribution이라면 모델 확률은 귀납적 반복을 통해 계산 가능

즉, DL의 원래 목표인 p(θ|D), p(θ|x,y)를 구할 수 있고 이를 직접 최대화하는 방향으로 학습을 진행하게 된다.

위 방법이 MAP:maximun a posteriori이다

 

더보기

MAP와 MLE

MAP는 모델의 확률을 알 수 있기 때문에 모델의 확률을 고려하며 likelihood의 max를 찾는 것이며 MLE는 MAP와 동일하지만 모델의 확률을 모르는 상태에서의 likelihood의 max를 찾는 과정을 말한다.

 

 

VAE

Variational AutoEncoder

https://velog.io/@hong_journey/VAEVaritional-Auto-Encoder%EB%A5%BC-%EC%95%8C%EC%95%84%EB%B3%B4%EC%9E%90

 

가정 : 모든 분포는 gaussian distribution이다

 

  • gaussian encoder : input Xi에 대한 Zi의 평균과 분산 계산함
    • Zi : latent space로 Zi의 평균과 분산이라 함은 latent space의 True 분포를 의미한다
  • Zi는 decoder를 통과하여 output을 생성한다
    • Zi -> sampling -> output1, output2...
    • 이때 samplig은 random process이기 때문에 일반적 네트워크처럼 back propagation을 통해 적용할 수 없음
    • reparametrization trick : 따로 sampling을 적용하여 평균과 분산에 반영해준다

이때, VAE를 떠올리면 AE 또한 생각나는데 이 둘의 차이를 알아보자면

autoencoder

둘 다 오토인코더 구조이지만 AE는 encoder를 알아내는 것이 목표, 즉 input data의 feature를 가장 잘 표현하는 manifold를 찾는 것이 목표이며 VAE는 decoder에 집중하여 그에 맞는 output을 도출하는 것이 목적이다.

 

+ Auto Regressive(AR)는 과거 움직임을 기반으로 미래를 예측하는 것으로 주로 시계열 데이터에 자주 이용된다

여기서의 auto는 자기 자신을 의미한다고 보면 이해하기 더 쉬울 것이다.

 

 

VAE의 ELBO

VAE 모델을 학습하려면 어떠한 loss function 혹은 objective function을 사용해야할까?

 

-> decoder를 학습하는 것이 목표, 즉, p(θ)의 maximum을 구하는 것이 목표!

p_θ(x|z) : input x와 동일한 x가 decoder로부터 나올 확률

 

다시 말해 input x의 분포가 잘 나올 확률 p(x)를 최대화하는 것이 최종 목적이다

p(x)의 objective function을 풀어나가보면 posterior인 p_θ(x|z)를 구해야 우리가 원하는 결과를 알 수 있음

하지만 posterior distribution의 경우, closed form이 아니기 때문에 매우 intractable함

-> 무수히 많은 z에 대해 모두 계산하는 것은 쉽지 않음

 

따라서 우리가 알기 쉬운 분포인 encoder의 분포를 도입하여 문제를 해결하게 됨

-> 구하기 어려운 분포를 다루기 쉬운 확률 분포로 근사하는 방법 : variational inference (VI)

 

VI : 변분추론

상수, 변수, 일반적 연산이나 함수 등으로 표현 가능한 closed form이 아니거나 굉장히 난해한 경우, 다루기 어려운 분포를 최소화하기 위해 이상적 다른 분포를 가정하여 근사해 해결하게 됨

 

  • Monte Carlo Sampling

    어떠한 분포를 가정하고 여러번 샘플링하여 평균을 구한다.

    여러번 샘플링하여 구한 본 '평균과 전체에 대한 기댓값이 같아질 것'

 

  • Stochastic Variational Inference : SVI

    KLD를 줄이는 쪽으로 파라미터를 업데이터하는 방법

    stochastic gradient descent를 활용함

    단, KLD가 미분 가능해야한다.

 

  • Variation EM algorithm

    posterior p_θ(x|z)를 알기 위해 미지의 파라미터들을 동시에 알아내는 것을 포기하고

    expectation과 maximization을 활용하는 방법

    - expectation : monte carlo 방법등을 활용하여 파라미터 도출

    

 

추가적 용어

Monte Carlo Approximation

넓이 1인 직사각형에 걸쳐진 1/4 원 넓이를 구해보자!

직사각형 환경에 무작위로 수많은 점을 찍는다

'충분히 많은 점들이 찍혔을 때의 원 안으 점 개수와 전체 점 개수 비율로 넓이를 구해주면 정답에 근사한다'

=> 즉 무수히 많은 시도를 해보면, 정답을 알 수 있다.

위의 예시는 매우 쉬운 예제이지만 아주 복잡한 문제를 풀고자 할 때 용이하다.

 

KL-divergence

kullback-leibler divergence

두 확률분포의 차이를 계산하는데 사용되는 함수

그 분포를 근사하는 다른 분포를 사용해 샘플링하고 발생할 수 있는 엔트로피 차이를 계산한다

말 그대로 '두 분포의 차이'

 

- 0 이상이다 = non-negative

    cross-entropy - entropy이며 cross-entropy의 lower bound는 entropy임

- 거리 개념이 아니다

    KL(p||q) != KL(q||p)

 

=> 추후에 cross entropy 공부해서 더 자세하게 정리해두겠음

https://hyunw.kim/blog/2017/10/27/KL_divergence.html

 

초보를 위한 정보이론 안내서 - KL divergence 쉽게 보기

사실 KL divergence는 전혀 낯선 개념이 아니라 우리가 알고 있는 내용에 이미 들어있는 개념입니다. 두 확률분포 간의 차이를 나타내는 개념인 KL divergence가 어디서 나온 것인지 먼저 파악하고, 이

hyunw.kim

 

ELBO : evidence of lower bound

KLD는 0 이상이다라는 조건을 사용해 찾아낸 lowewr bound

- ELBO는 Lower bound -> 이를 최대화한다면 objective function을 최대화한다고 볼 수 있다

=> ELBO도 마찬가지

 

'DL 기본개념' 카테고리의 다른 글

Deep Learning : ANN, DNN, RNN, CNN (SLP, MLP)  (0) 2024.03.07
Wavenet 논문 전체 내용  (0) 2023.11.01
Object Detection 개념 정리 및 학습일지  (0) 2023.10.27
CV Task  (0) 2023.10.09
[RNN, LSTM, GRU]  (1) 2023.10.02